miércoles, 2 de julio de 2008

Las enzimas disminuyen la energía de activación

Este gráfico representa la energía de activación en función del tiempo en reacciones químicas catalizadas o no.
La curva negra muestra que sin enzima, se requiere una mayor energía de activación y lleva mayor tiempo obtener los productos a partir de los sustratos.
Las enzimas reducen la energía de activación y permite quelareacción química se produzca a velocidades compatibles con la actividad celular.
Sin enzimas, no habría víasmetabólicas en las células.

1 comentario:

Anónimo dijo...

REACCION EN CADENA DE LA POLIMERASA

¿Qué es la autoduplicación de ADN?

Cuando la célula se divide, cada nueva célula que se forma debe portar toda la información genética, que determine sus características y funciones. Para eso, antes de dividirse, el ADN debe replicarse, es decir generar una copia de sí mismo. Durante la replicación, la molécula de ADN se desenrolla, separando sus cadenas. Cada una de éstas servirá como molde para la síntesis de nuevas hebras de ADN. Para eso, la enzima ADN-polimerasa coloca nucleótidos siguiendo la regla de apareamiento A-T y C-G. El proceso de replicación del ADN es semiconservativo, ya que al finalizar la duplicación, cada nueva molécula de ADN estará conformada por una hebra “vieja” (original) y una nueva.

¿Qué es la polimerasa?

La polimerasa es una enzima capaz de transcribir o replicar ácidos nucleicos. Resultan cruciales en la división celular (ADN polimerasa) y para la traducción o síntesis de proteínas (ARN polimerasa)

¿Cómo actúa?

La transcripción
Durante la transcripción la enzima ARN polimerasa, copia la secuencia de una hebra del ADN y fabrica una molécula de ARN complementaria al fragmento de ADN transcripto. El proceso es similar a la replicación del ADN, pero la molécula nueva que se forma es de cadena simple y se denomina ARN. Se denomina ARN mensajero porque va a llevar la información del ADN hacia los ribosomas, las organelas encargadas de fabricar las proteínas. El ARN, o ácido ribonucleico, es similar al ADN aunque no igual.

¿Cuál es la importancia biológica?

La importancia biológica de la polimerasa, es que se encarga de duplicar exactamente la información genética de ADN en la división celular. A veces, y este es un fenómeno relativamente frecuente, la enzima que se encarga de la replicación del ADN (ADN polimerasa) se equivoca, es decir, coloca un nucleótido en lugar de otro. Si, por ejemplo, la enzima ADN polimerasa coloca una T en lugar de una A podría ocurrir que al traducirse, se coloque en la proteína un aminoácido diferente del que correspondería. Por lo tanto, la proteína generada sería diferente en un aminoácido a la original. Este cambio en el ADN, llamado mutación, podría alterar o anular la función de la proteína.
Este ejemplo ilustra el efecto de los cambios o mutaciones puntuales (debidos a un único cambio en la secuencia) en la proteína final. En algunos casos las mutaciones pasan inadvertidas, pero también pueden provocar la falta de actividad de una proteína esencial y causar una enfermedad. De todas formas, la mayoría de las mutaciones no se manifiestan, o porque están en regiones del ADN donde no hay genes, o porque no cambian el aminoácido, o porque ese cambio no altera la función de la proteína. O bien podría alterarse la función y esto no resultar perjudicial. Tal es el caso del carácter color de ojos, donde el color claro se produce por falta de ciertas enzimas que fabrican los pigmentos del iris.
En realidad, las mutaciones son la base de la biodiversidad. Es decir que las pequeñas diferencias en el ADN es lo que determina que los seres vivos sean diferentes entre sí. Esta diversidad en las características sumada a la existencia de un código genético común entre los seres vivos, son dos hechos determinantes en el desarrollo de la biotecnología moderna.

¿A qué se llama PCR? ¿Qué finalidad cumple?

Se llama PCR (siglas en inglés: Polymerase Chain Reaction), a la reacción en cadena de la polimerasa. Es una técnica de biología molecular que permite replicar entre cientos de miles y millones de veces, en el transcurrir de pocas horas e in vitro, pequeñas cantidades de ADN. Uno de los aportes fundamentales de esta metodología a la investigación básica en biología molecular consiste, precisamente, en la rapidez y eficiencia mediante las cuales se realiza una tarea que antes requería largas y tediosas jornadas. El producto que se obtiene al finalizar la reacción -una gran cantidad de un fragmento génico con alto grado de pureza- favorece la tarea de los investigadores empeñados en ampliar nuestros conocimientos sobre la estructura y función de los genes.

¿Por qué utiliza polimerasas de bacteria?

Esta técnica se fundamenta en la propiedad natural de las ADN polimerasas para replicar hebras de ADN, para lo cual emplea ciclos de altas y bajas temperaturas alternadas para separar las hebras de ADN recién formadas entre sí tras cada fase de replicación y, a continuación, dejar que vuelvan a unirse a polimerasas para que vuelvan a duplicarlas.
Inicialmente la técnica era lenta, ya que las polimerasas se desnaturalizaban al realizar los cambios de temperatura y era necesario agregar nuevas polimerasas en cada ciclo. Puesto que las temperaturas del ciclo (95 ºC en las fases de desnaturalización del ADN) suponen la inmediata desnaturalización de toda proteína, se emplean ADN polimerasas termoestables, extraídas de microorganismos adaptados a vivir a esas temperaturas, restrictivas para la mayoría de los seres vivos, como por ejemplo, las bacterias.

¿Cómo funciona la PCR?

Hoy, todo el proceso de la PCR está automatizado mediante un aparato llamado termociclador, que permite calentar y enfriar los tubos de reacción para controlar la temperatura necesaria para cada etapa de la reacción. Los tubos usados para PCR tienen una pared muy fina, lo que favorece una buena conductividad térmica, permitiendo que se alcance rápidamente el equilibrio térmico.

Por lo general, la PCR es una técnica común y normalmente indispensable en laboratorios de investigación médica y biológica para una gran variedad de aplicaciones. Entre ellas se incluyen la clonación de ADN para la secuenciación, la filogenia basada en ADN, el análisis funcional de genes, el diagnóstico de trastornos hereditarios, la identificación de huellas genéticas (usada en técnicas forenses y tests de paternidad) y la detección y diagnóstico de enfermedades infecciosas.

El proceso de PCR por lo general consiste en una serie de 20 a 35 cambios repetidos de temperatura llamados ciclos; cada ciclo suele consistir en 2-3 pasos de temperaturas. La PCR común se realiza con ciclos que tienen tres pasos de temperatura. Los pasos de ciclos a menudo están precedidos por un choque térmico (llamado "hold") a alta temperatura (> 90°C), y seguido por otro hold al final del proceso para la extensión de producto final o el breve almacenaje. Las temperaturas usadas y el tiempo aplicado en cada ciclo dependen de gran variedad de parámetros. Éstos incluyen la enzima usada para la síntesis de ADN, la concentración de iones divalentes y dNTPs en la reacción, y la temperatura de unión de los cebadores.

Pasos del proceso:

Inicialización:
Este paso consiste en llevar la reacción hasta una temperatura de 94-96ºC (ó 98ºC si se está usando una polimerasa termoestable extrema), que se mantiene durante 1-9 minutos. Esto sólo es necesario para ADN polimerasas que requieran activación por calor.

Desnaturalización:
En primer lugar, se desnaturaliza el ADN (se separan las dos hebras de las cuales está constituido). Este paso puede realizarse de diferentes modos, siendo el calentamiento (94-95ºC) de la muestra la forma más habitual. Otros métodos, raramente empleados en la técnica de la PCR, serían la adición de sales o agentes químicos capaces de realizar la desnaturalización.

Alineamiento/Unión del cebador:
A continuación se producirá la hibridación del cebador, es decir, el cebador se unirá a su secuencia complementaria en el ADN molde. Para ello es necesario bajar la temperatura a 50-65ºC durante 20-40 segundos (según el caso), permitiendo así el alineamiento. Los puentes de hidrógeno estables entre las cadenas de ADN (unión ADN-ADN) sólo se forman cuando la secuencia del cebador es muy similar a la secuencia del ADN molde. La polimerasa une el híbrido de la cadena molde y el cebador, y empieza a sintetizar ADN. Los cebadores actuarán como límites de la región de la molécula que va a ser amplificada.

Extensión/Elongación de la cadena:
Actúa la ADN polimerasa, tomando el ADN molde para sintetizar la cadena complementaria y partiendo del cebador como soporte inicial necesario para la síntesis de nuevo ADN. La temperatura para este paso depende de la ADN polimerasa que usemos. Para la Taq polimerasa, la temperatura de máxima actividad está en 75-80°C (comúnmente 72°C). El tiempo de extensión depende tanto de la ADN polimerasa usada como de la longitud del fragmento de ADN que se va a amplificar. Hay una regla básica: en su temperatura óptima, la polimerasa de ADN polimerizará mil bases en un minuto.

Elongación Final:
Etapa única que se lleva a cabo a una temperatura de 70-74°C durante 5-15 minutos tras el último ciclo de PCR. Con ella se asegura que cualquier ADN de cadena simple restante sea totalmente ampliado.

Conservación:
Este paso se lleva a cabo a 4-15°C durante un tiempo indefinido para conservar la reacción a corto plazo.

La PCR normalmente se realiza con un volumen de reacción de 0.2-0.5 ml, en pequeños tubos de 15-100 μl que se colocan en el termociclador.